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Summary

In this paper, we propose an optimal least-squares finite element method for 2D and

3D elliptic problems and discuss its advantages over the mixed Galerkin method and

the usual least-squares finite element method. In the usual least-squares finite element

method, the second-order equation -V • (Vu) + u = f is recast as a first-order system

-V • p 4- u : f, Vu - p : 0. Our error analysis and numerical experiments show

that, in this usual least-squares finite element method, the rate of convergence for flux

p is one-order lower than optimal. In order to get an optimal least-squares method, the

irrotationality V x p = 0 should be included in the first-order system.



1. Introduction

The least-squares finite element method (LSFEM) discussed here is based on minimizing

the L2 norm of the residuals of partial differential equations. In order to use C o elements,

the second-order 2D elliptic partial differential equation is reduced to a system of three

first-order differential equations by introducing two more unknown variables (flux). This

idea was first proposed by Lynn and Arya[1] and Zienkiewicz[2], and was an important

contribution to the development of least-squares finite element methods. This procedure

has long been considered as a standard way to develop least-squares methods.

In this paper, we present both theoretical analysis and numerical results to show that,

this simple procedure of reduction destroys ellipticity and the usual LSFEM is not optimal,

that is, the rate of convergence for flux is one-order lower than optimal. In order to get

an optimal LSFEM, the compatibility condition (the irrotationallty) should be included in
the first-order system.

The plan of the presentation is as follows. In Section 2, we introduce the model

problem and notations. In Section 3, we give a short summary on the related mixed

Galerkin method for the purpose of comparison. In Section 4, we analyse the usual LSFEM

and explain where the trouble comes from. In Section 5, an optimal LSFEM and the error

estimation are presented. In Section 6, we discuss how to deal with some more general

elliptic problems. In Section 7, numerical results are given.

2. Preliminaries and Notations

In this paper, we present the essential idea of the optimal least-squares finite element

method by solving the following second-order elliptic boundary-value problem:

-V. Vu + u =/(x) in _2,

Vu-n =9(x) on P,
(1)

where f_ C _'_ (n = 2 or 3) is an open bounded convex domain with a piecewise C a

boundary P, x = (xl,x2,x3) is a point in _, n = (na,n2,n3)is a unit outward normal

vector on the boundary, and f(x) and g(x) are given functions. Without loss of generality,

we shall hereafter consider only the homogeneous boundary condition for simplicity, that

is, we shall take g(x) = O. The primal variable u can be, for instance, temperature for

heat conduction; potential for incompressible and irrotational flow; or electric potential for
electromagnetics, etc.

Throughout this paper, we use the following notations. Le(fl) denotes the space of
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square-integrable functions defined on ft equipped with the inner product

(u, v) = j[ uvdx u,v e L2(f_)

and the norm

Ilull0_ = (u,u) u • L2(_).

H'(f_) denotes the Sobolev space of functions with square-integrable derivatives of order

up to r. I" [_ and I]" ]]_ denote the usual semJnorm and norm for H_(f_), respectively. For

vector-valued function p with n components, we have the product spaces

(L_(_))_, (H'(_)) _,

and the corresponding norm

Ilpll_ = _ Ilpjl]0_, Ilplt_ = _ llpjll_•
j=l j=l

Further we define the function spaces

H = {v • H'(a)),

S= {q • (Hl(f_))'_[q. n=0 on F},

w = {q • (L_(_))"lq •n = 0 on r),

and the corresponding finite element subspaces Hh, ,-qh and Wh, i.e., Hn and S'n are the

spaces of continuous piecewise polynomial functions of order k, and Wh is the space of

continuous piecewise polynomial functions of order k - 1. Here the parameter h represents

the maximal diameter of the elements. By the finite element interpolation theory[3,4],

we have: Given a function u • H_+l(f_) and a function p • (Hk+_(f_)) '_, there exist an

interpolant fi_ • Hh and 15 • Sh such that

llu- _hllo <_Chk+lllullk+l,

llu -- _hlt_ _ Chkll_ll_÷_, (2)

lip - r_hl[0_ Chk+_llPllk+_,

liP - lbhlll -<ChkllPll_+_,

here and below C denotes a constant independent of the mesh parameter h, with possibly

different values in each appearance.



We would also llke to write down Green'sformula

(V .q,v) + (q, Vv) : f vq. nds.
Jr

(3)

3. The Mixed Galerkin Method

The most commonly used method for problem (1) is the classical Galerkin method.

However, a posteriori numerical differentiation is required to obtain dual variables (flux

for heat transfer; velocity for fluid flow; or electric field intensity for electromagnetics)

which are often of most interest. In general, the accuracy of so computed dual variables is

one-order lower than that of the primal variable.

Mixed Galerkin methods were devised in the hope of getting better accuracy for dual

variables[3,5]. Here the term "mixed" means that both the primal variable and the dual

variables are approximated as fundamental unknowns.

In mixed methods, problem (1) is decomposed into an equivalent first-order system:

-V.p+u=f in_,

Vu - p = 0 in _,

p.n=0 onP.

(4)

Then the Galerkin principle is applied to problem (4). This leads to the mixed Galerkin

weak statement: Find (u, p) E H × W such that

(uv + Vv. p)dx = _ fvdx in _ Vv e H,

Vu- q- p. q)dx = 0 in _ Vq C W.

(5)

It is well known that problem (5) corresponds to a saddle-point variational problem,

and thus in order to guarantee the existence of the solution, the pair (u, p) must satisfy

the following Babu_ka-Brezzi condition:

f.( Vu. pdx)(llulll)-' >__CIIPlI0
u_0

vpew. (6)
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The Babu_ka-Brezzicondition precludesthe application of simple equal-order finite
elements. It can be proved that the finite element spacesHh and Wh satisfy the dis-

crete Babuska-Brezzi condition (6), and if the solution (u, p) of (4) belongs to Hk+l(_) x

(Hk(f_)) '_, we have the following error estimate[5]:

lu- uhll + Irp- phlro_<Ch_(lul_+l+ IlPtJ_)- (7)

The estimate (7) tells us that in this mixed method the accuracy for flux p is always

one-order lower than that for the primal variable u.

By inspecting equation (5), we know that the matrix associated with the mixed method

is non-positive. This makes the use of iterative methods to solve large-scale problems very

difficult.

4. The Usual LSFEM

The usual LSFEM [1,2] is also based on first-order system (4). For 2D problems, the

first-order system in (4) consists of three equations and three unknown functions. The first-

order system with an odd number of unknowns and an odd number of equations cannot

form an elliptic system in the ordinary sense. For 3D problems, although the first-order

system in (4) has four unknowns and four equations, it is easy to verify that the system is

not elliptic in the ordinary sense. This fact makes us suspect that the LSFEM based on

system (4) will not be optimal.

Now let us analyse the usual LSFEM which minimizes the following functional:

I:H×S_,

r(u, p) = II- v, p + u - fH0_+ IlVu- plr_. (8)

Taking variation of I with respect to u and p, and letting _5[ = 0, 5u = v and 5p = q lead

to a least-squares weak statement: FindU = (u,p) E H x S, such that

B(U,V) = L(V) VV= (v,q) • H x S, (9)

where

B(U,V) = (-V.p + u,-V.q+ v) + (Vu - p, Vv - q),

L(V) = (f ,-V . q --kv).



The corresponding finite element problem is then to find Uh = (Uh, Ph) E Hh × Sh,
such that

B(Vh,Vh) = L(Vh) VVu=(vh,qh) C Hh x Sh, (10)

where

B(Uh,Vh) = (-V. Ph + uh,--V, qh + Vh) + (Vuh -- Ph,Vvh -- qh),

L(Vh) = (f,-V "qh + Vh).

It is easy to verify that

B(U, V) <_ CIIUII. IlVll, (11)

where [lUll 2 = Ilull_ + Ilpl[02 +tlv. pll02. Thus, B(U,V) is continuous on H x S. Since

B(U, V) is symmetric, the inequality in the Lax-Milgram theorem reduces to the single

coercivity requirement: There exists a constant a > 0 such that for V C H x S

B(V, v) _ _llVll_, (12)

Let us prove the coercivity (12). We know that

B(V, V) = II - V-q + vii g + IlVv - ql[g-

Consequently,

(13)

or

B(V, V) _ o.5(llvll_+ IlV. qllo2 + I[qllo2). (16)

REMARK. We may say that the coercivity (16) is incomplete or deficient, because the

derivatives of q are not completely controlled in general. This explains why the usual

LSFEM often does not behave well.

Therefore, the following theorem about the rate of convergence of the usual least-

squares finite element solutions can be derived.

B(V, V) _ [IV.q- vtl02 = [IV"qllg+ Ilvtl02- 2(v. q,v), (14)

B(V, V) _>llVv- q[[_ = IlVvl[0_+ IIqlIN- 2(q,Vv). (15)

By combining (14) and (15) together and using Green's formula (3) and the boundary

condition, we obtain the coerclvity:

B(V, V) > 0.5(llVvllN+ Ilvlt0_+ I[V. ql[02 + [[q[[02),



THEOREM $.1. Assume that f(x) E L2(_), the solution (u, p) of (4) belongs to Hi+l(it)x

(H k+l (f_))'_, and the finite element interpolation estimates (2) hold. Then for the approx-

imate solution associated with (10), we have the error estimate:

[lu-- hlII+IIV'(P--Ph)IIo+IIP--PhlIo Ch (ll llk+ + llPllk+ ). (17)

This theorem shows that the accuracy of the flux p for the usual LSFEM is one-

order lower than optimal. Even so, the usual LSFEM has significant advantages over the

mixed Galerkin method. Namely the usual LSFEM is not subject to the Babugka-Brezzi

condition and thus can accommodate simple equal-order elements, and the resulting matrix

is symmetric and positive definite and thus simple iterative methods, such as conjugate

gradient methods, can be employed and vectorization and parallellzation are trivial.

5. The Optimal LSFEM

Conservative laws and constitutive laws in physics are in general governed by first-

order systems. For historic reasons (convenience for hand calculation and analysis), the

equations in a first-order system are combined into a high-order partial differential equation

(or equations) with one or less unknowns. For example, for incompressible and irrotational

flows, by introducing the potential (or the stream function in 2D cases), the incompressibil-

ity and the irrotationality are combined into a second-order Laplace or Poisson equation.

We believe that in the computer age this transformation is unnecessary. We may

solve directly the original first-order governing equations by LSFEM. For flows considered

in this paper, the governing equations are the following:

-v . p + u = f in n, (18.1)

V x p = 0 in _, (18.2)

Vu - p = 0 in It, (18.3)

p. n = 0 on r. (18.4)

Here (18.1) is the mass conservation, (18.2) represents the irrotationality, and (18.3) is the
constitutive relation.

For 2D problems, the first-order system in (18) consists of three unknowns and four

equations. At first glance, one may think that this is an overdetermined system. In fact,

this is a determined system in the sense that the components pl and p2 of p in (18.3) are

not completely independent. They must satisfy (18.2).
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Let us show that system (18) is determined and elliptic. In 2D cases, we introduce

a dummy variable ¢ (this technique was first pointed out to us by C.L.Chang for 2D

problems), and rewrite system (18) as

Opl Op_

Oz---_+ Oz2 u = -f in _2, (19.1)

Opl OpA =
-Oz---2+ Ozl 0 in _2, (19.2)

Ou 0¢
0_1 _X2

pl =0 in _, (19.3)

Ou 9¢
Oz_ + OXl P2 = 0 in _2, (19.4)

plnl + p2n2 = 0 on F, (19.5)

¢ = 0 on P. (19.6)

0(19.3)/0_ - 0(19.4)/0_1 leads to 0_¢/0_ + 0_¢/0_ 0. We have already speciSed
that ¢ = 0 on F, thus ¢ - 0 in _. This means that system (18) with three unknowns and

four equations is indeed equivalent to system (19) with four unknowns and four equations.

Now we write (19) in a standard matrix form:

0u tgu

Al_ + A2_ + Au = f i,_n, (20)

in which

(i00 ) ( 1o0)1 0 A2 = -01 0 0 0
A1 = 0 1 ' 0 0 0 -1

0 0 0 0 1 0

Since

k (OO_l )(!)0 0 0 f=
-1 0 0 '

0 -1 0 0 0

U

\¢

det(Al_ + A.2r/) = det
_ ,7o o)

-_o o
o o _ -,_
o o ,7

= (U + v_)_# o

for all nonzero real pair (_, T/), system (19) and thus system (18) is determined and elliptic,
as contended.
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In 3D cases, by introducing dummy unknowns c_,wa,w2,w3, we write the following

first-order system with eight unknowns and eight equations:

0pl 0p2 02!_
o%-T+ _ + o_3 == -f i_ a,
Op2 Op3 O_

0p3 0pl 0$
-o--_+ _-_ + b_: +_2 = o i.a,

0pl 0p2 0_----Ox2 + _ + _ + ua3 =- O in _,

Ow2 Ow3 Ou _

-02--3 + _ + Oz, pl = 0 in fl, (21)

Owa Owx Ou _
-Oz--_ + _ + 022 P2 = 0 in _,

Owl 00.,2 O____u_
--02---2 + _ + 023 P3 = 0 in fl,

Owl Ow2 Ow3 = 0 in _,o_--T+ _ + o_-_
pin1 + p2n2 + p3n3 = 0 on F,

qS= 0 on F,

OJ1 = OJ2 = OJ3 -_- 0 On _

It is not difficult to verify that q_ = wl = w2 = ws _ O, and thus system (18) with four

unknowns and seven equations is indeed equivalent to system (21) with eight unknowns

and eight equations.

We may write system (21) in a standard matrix form:

Ou Ou Ou

A1 _-_-zl + A20-_z _ + A3 _z3 + Au = f
in 9t, (22)

in which

.A 1 --

/ 1 0 0 0 0 0 0

_0 0 0 0 1 0 0

0 0 -1 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 -1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0

0

0

,A2=

/0 1000 0 0
!

0 0 1 0 0 0 0

0 0 0 0 1 0 0

-1 0 0 0 O 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 -1 0

0 0 0 0 0 0 1

0 _

0

0

0

1 '

0

0

OJ



A 3 =

/0 0 1 0 0 0 0
!

0 -1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 -1

0 0 0 0 0 1 0

0 0 0 1 0 0 0

_0 0 0 0 0 0 0

Since

det(Al_+A2"7+A3_) = det

f w_.

-_

0

0

0

0

0

0

1,

/f'
0

0

0

0

0

0
I

\0,

,A=

0 0

0 0

0 0

0 0

-1 0

0 -1

0 0

0 0

¢'pl '_

p2

p3

u
U_

4,
¢M1

0._2

0 -1 0 0 0 O_

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

-1 0 0 0 0 0

0 0 0 0 0 OJ

7? _c o o o o o'_
o -_ ,1 o _ o o o

0 -_ o'7 o 0 0
-,7 _ o o _ o o o
o 0 o _ o o -_ ,7
o o o ,7 o _ o -_
o o o _ o -'7 _ o
o o o o o _ ,7 _;

= _(¢_+'7_+_2)4 # o

for all nonzero real triplet (_,%_), system (21) and thus system (18) is determined and

elliptic.

Now we may use the error analysis developed by Aziz, Kellogg and Stephens[6] for

general elliptic systems to show that the LSFEM based on system (18) is optimal. However,

their method involves high-level mathematics. Here we use elementary analysis to give a

poof of the optimality. The key point of this proof is the following technical lemma:

LEMMA 5.1. Every function q E S = {q E (n_(n))_lq. n = 0 on r) satisfies:

Iq]l2 _<IlV. qll02 + IlV× qlt02. (23)

The lemma is discussed in Girault and Raviart[7], and the complete proof can be

found in Grisvard[8]. Here we give an elementary proof for 2D rectangular domains. For

3D rectangular domains, the proof is similar.

Proof.
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Since

fn Oq_ Oq2IIV" qll_ + [IV × qll_o = lql_ + (Ozl Ozz

Oqa Oq2 Oq2 0qa Oq2 0q,.
+ - - )dx,

OZl 0Z2 OZl OQ;g2 0Z 1 0Z2 _

using integration by parts, we have

fp Oqq2 Oql OqlItv "ql]_ + ]lV × ql]o2 = Iql_+ (naqa-_x2+ n2q2-_z' naq2-a-(.Ix 2

Oq2 ds
-- - n2ql oza ) "

The boundary term in the foregoing equation is equal to zero by virtue of the boundary

condition q • n = 0. For example, for the part of boundary with nl = 1, n2 = 0, the

boundary condition is ql = 0, and thus Oql/Oz2 = 0. Therefore, the boundary integration

associated with this part of boundary is equal to zero.

The optimal LSFEM minimizes the following functional:

I:HxS_,

[(u, p) = l[ - V- p + u - fl[02 + IIV× pll02 + IlVu - pl[_. (24)

Taking variation of [ with respect to u and p, and letting 61" = 0, 6u = v and 6p = q lead

to a least-squares weak statement: Find U = (u, p) E H × S, such that

B(U, V) = L(V) VV = (v, q) C H x S, (25)

where

B(U,V) = (-V.p + u,-V.q + v) + (V x p,V x q)+ (Vu - p,Vv- q),
L(V)=(f,-V.q+v).

The corresponding finite element problem is then to find Uh = (Uh, ph) E Hh X Sh,
such that

S(Uh,Vh) = L(Vh) VVh=(vh,qh) e Hh × Sh, (26)

where

B(Uh,Vh) = (-V. Ph +Uh,--V" qh + Vh) + (V x ph,V x qh) + (VUh -- ph, VVh -- qh),

L(Vh) = (f,-V • qh + Vh).

It is easy to verify that

B(U,V) _ CllUII, IlVll, (27)
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where

IIUtl== I1 1t + Ilpll 

Thus, B(U, V) is continuous on H x S. Since B(U, V) is symmetric, the inequality in the

Lax-Milgram theorem reduces to the single coercivity requirement: There exists a constant

a > 0 such that for V E H x S

B(V, V) >_ _[IV[I 2. (28)

Following the similar argument as in Section 3, we may get

B(V, V) 0,5(llVvl/ + Iivll0+ Hr. qll_ + IlV x qlf + [Iqll0_)• (29)

The combination of (29) and Lemma 5.1 yields the coercivity (28).

Once the coercivity is proved, the derivation of the following theorem is trivial.

THEOREM 5.2. Assume that f(x) E L2(n), the solution (u,p) C Hk+l(gt) × (Hk+l(fl)) '_

and the finite element interpolation estimates (2) hold. Then for the approximate solution

associated with (26), we have the error estimate:

(30)[]u - uh]]a + [[p -- Phl[_ < Chk(llu[]_+l + ][Pllk+_).

This theorem shows that the rate of convergence (in t/1 norm) of the LSFEM based

on the full first-order system (18) is optimal for all variables. The optimal L2 convergence

can be obtained by Aubin-Nitsche method[3]. The optimality attributes to the fact that

the optimal LSFEM controls not only the divergence, but also the curl of the error of flux.

6. Discussion

If there is no u term in the first equation of (1), the corresponding (4) becomes the

so called div-grad system and the corresponding (18) is the div-grad-curl system. If the

boundary condition is still only related to flux p, then the calculation of u and p can be

separated. We may use the LSFEM based on the div-curl system to obtain p first, then

use p to calculate u. The LSFEM based on the div-curl system is optimal[9,10].

We also would like to discuss the optimal LSFEM for some more general cases. For ex-

ample, 2D seepage can be modelled by a system of first-order partial differential equations

Opl Op_

Ox_ + Oz_ = f in n, (31.1)

Ou Ou

Pl = all _l-Xl + a12 0x2 in _,

of the form:

(31.2)

12



Ou Ou

p_ = a_l_ + a_20_--S in _, (31.3)

pin1 + p2n2 = g on P, (31.4)

where u denotes the hydraulic head, pl and P2 are the components of seepage ve]ocity, and

f and g are given functions.

For simplicity, we consider the case in which the coefficient aij are constant, and the

matrix (aij) is symmetric and positive definite. Thus, the constitutive relations (31.2) and

(31.3) are invertible:

Ou 1

O_ -- (a_a_ -al_a_,)(a_2p_ - a,_p2), (32.1)

Ou 1

Ox2 -- (a,la22 - a12a21) (a, lp2 - a21Pl ).

From (32.1) and (32.2) we can obtain the compatibility condition:

Op, Op2 0p_ 0p,
a22 Oxx2 al_ Ox-x2 all _ + a210-Zl- --- O.

(32.2)

(33)

The LSFEM based on equation (31.1), (31.2), (31.3) and (33) will be optimal. 3D

seepage can be similarly treated.

7. Numerical Results

As the first example, we chose

y2 y3 x2 x3 x2 x 3 y2 y3

f=(2x-1)(2 3 ) +(2y-1)(2 3 ) + (2 3 )(2 3 ) inf',

where _ = {(z,y) E _2 : 0 < z < 1,0 < y < 1} is the unit square with the boundary P.

The boundary conditions are
: !

p_ = o on r_ = {(_,v) e r:_ = o},

p_ = o on r_ = {(_,v) e r:_ = 1),

p_ = o on r2 = ((_,v) e r: v = o},

P2 =0 on F4 _--((x,y) E F:y=i}.

13



The exact solution should be

x2 x3 y2 ya

_'=-( 2 3 )( 2 3 )'

y2 y3

pi = (_ - _)( _ 3 )'

_32 _3

/92 = (y2_ y)( 2 3 )"

Numerical experiments were carried out using billnear elements on uniform meshes with

1/h = 4,9,20,29. We calculated the L2 errors for u and p:

e_ = Ilu- u_ll0, ep= (liP1- Plhll_-4-IlP_- p2hll0_)_.

The numerical results on the rates of convergence are given in Fig.1 (a) and (b). As

expected, the rate of convergence of flux p for the usual LSFEM is O(h), which is one-

order lower than optimal. The rates of convergence are O(h 2) for both the primal variable

u and the dual variables p for the optimal LSFEM.

As the second example, we chose

f = (5'n -2 + 1)cos(27rx)cos(Try)

with the same boundary conditions as in example 1. The exact solution is

,_= -co_(2_:=)co_(_y),

Pl = 2=Sin(2==)CO_(=y),

p== =eos(2==)_in(=y).

The numerical rates of convergence are shown in Fig.1. (c) and (d). It seems that the

rate of convergence of p for the usual LSFEM is getting better when the mesh is refined.

However, the error of p for the usual LSFEM is quite large.

Here we should mention that in all of our calculations, 2 x 2 Gaussian quadrature

was used for finite element solutions, and 3 x 3 Gaussian quadrature was used for error

evaluation. The LSFEM with numerical quadrature is equivalent to a weighted colloca-

tion least-squares method. We may use this idea to choose an appropriate number of

Gaussian points. The usual LSFEM with one-point quadrature will not work, because it

corresponds to solving a underdetermined algebraic system. The optimal LSFEM with

14



one-point quadrature works. However, the computednodal valuesof p have oscillations;
but the valuesof p at Gaussianpoints arecorrect.
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